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SUPERSONIC FLOW OVER A THIN WEDGE 

INTERSECTED BY THE FRONT OF AN EXTERNAL PLANE COMPRESSION SHOCK* 

L.E. PEKUROVSKII 

The steady-state three-dimensional self-similar problem of supersonic flowofperfect 

gas over a thin wedge is considered in the case when the flow is intersected by the 

front of an external plane compression shock normal to the wedge Plane of symmetry. 

Geometric parameters (in particular the angle between the wedge edge and the front 

plane are selected so as to make this problem suitable for use as a scheme for 

simulating the flow in which an external shock generated by the fuselage interacts 

with a wedge representing the thin wing of an aircraft. Such interaction of an 

external compression shock with the weak shock produced by the wedge is in the 

majority of cases irregular. Pressure distribution on the wedge surface and over 

the external shock front is defined by elementary functions, and the pressure over 

the wedge is determined. Conditions under which the line of intersectionofshocks 

can be in close proximity to the wedge, with pressure over the wedge behind the 

external compression shock changing abruptly, are indicated. 

1. The pattern of flow. Let a uniform supersonic stream pass through the front of 

a plane compression shock, with the stream velocity vector at some angle to the front plane. 

Let us consider the small perturbation of that flow induced by a thin flat wedge which is 

stationary relative to the front which intersects the wedge so that part of its edge is in 

the unperturbed stream of gas, while the other part is in the gas stream that has passed 

through the compression shock from (Fig.1). The velocity vector of gas particles that have 

not yet passed through the shock front is, as usual, assumed to lie in the wedge plane of 
symmetry which is moreover normal to the plane of that shock front. 

Gas particles that have passed through the compression shock front at the point of its 

intersection with the edge (surface n and point 0, respectively in Fiq.1). All notation in 
this Section conforms to that in Fig.1 become in their further motion sources of small pertur- 

bations propagating at supersonic velocity through the gas behind the shock. These pertur- 

bations are concentrated in the region bounded by the wall, the distorted part OIGfi‘of the 
shock front and by the Mach cone (surface 6) whose vertex is at point 0 and axis OE directed 

along the velocity vector of gas behind the shock. Adjacent to that region is region 5 of 
constant perturbations, bounded by the weak compression shock front surface c attached to 

that part of the edge over which flows the supersonic stream of gas that has passed through 

the compression shock (region 1). This front is either tangent to the Mach cone, as shown in 

Fig.1, or intersects the compression shock front along some line lying above 01. In the 
second case the interaction of shocks results in the appearance of a reflected shock which is 

tangent to the Mach cone surface. In the gas stream ahead of the compression shock, pertur- 

bations induced by the wedge are constant; their region is bounded by the wall, the weak ob- 

lique compression shock attached to the edge attached to the edge by surface (i,andpart OGF 
of the compression shock front surface (region B on Fig.1). 

Depending on parameters values that define the flow, line OG of front intersection may 
lie either outside the limits of the perturbed part of the compression shock front or belonq 
to it. In the first case the interaction of waves is regular, with a further region of per- 
turbed uniform stream formed behind the shock. That region is bounded by the weak diffracted 
shock tangent to the Mach cone, a part of the latter, and the compression shock front. In 
the second case, shown in Fiq.1, the interaction of waves is irregular. In the reference 
system attached to the interaction line of fronts and moving along it so that velocityvectors 

of gas particles entering the fronts of interacting waves are normal to the intersection line, 

and since the gas velocity behind the shock wave is subsonic, no diffraction pressure shock 
can exist behind the shock wave. The straight line OG, thus-represents the line of inter- 
section of only three compression shocks, one of which is weak. From the intersection line 
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also issues the contact discontinuity surface that separates the gas particles which n,iVi 
passed through the front of the weak oblique shock and part of the external shock front, fron: 

particles which have passed through the external shock front only (the contact discontinult) 
surface is not shown in Fig.1). 

Shock wave diffraction on a thin wedge in a sliding motion relative to the wave front. 

was studied in /l/ in the case of irregular interaction of the incident wave and the compres- 
sion shock induced by the wedge. A similar problem but in the case of regular rnteraction 
was analyzed in /2/. The flow pattern, i.e. the relative position of compression shocks, therr 
orientation with respect to stream velocity vectors, position of the wall, etc., in these 
diffraction problems is similar to that described above (the stationary external siiock wave 

relative to the wedge corresponds here to the incident shock wave). 

It is expedient to select as input parameters of the problem those that would enable us 
to consider the flow defined above asthemodelofflow aroundsome aircraftwith thecompression 

shock induced by the fuselage intersecting the compression shock produced by the wing (wedge). 

The fuselage is assumed to be a cone, more exactly, the angle the oncoming stream velocity 

vector and the external compression shock front plane is assumed to be equal the apex half- 
angle of the conical shock generated by the flow over the cone of a given apex angle, whose 

axis coincides with the direction of the oncoming stream velocity vector. 

As the input parameters we select: the Mach number N,of the unperturbed oncoming stream, 

the angle X in the symmetry plane of the wedge/wing between the normal to the stream velocity 

vector and the wedge edge (the edge angle of sweep) and the half-angle o of the fuselage cone 

apex. The half-angle E of the wedge which represents the wing is taken as the small para- 

meter of the problem. 

Besides these input parameters we have 

to consider also those whose relation to the 

detemlining parameters of the problem of 

shock wave diffraction by a thin wedge /1,2/ 

is the simplest, in order to establish the 

required correspondence between problems, 

and then use the data of /1,2/ for determin- 
ing pressure perturbations in the stream 

behind the compression shock. Such para- 

meters are: M,,x and fi'which is the angle 

between the oncoming stream velocity vector 

and the plane of the unperturbed compression 

shock front (Fig.1). The dependenceof angle 
2 fi' on the input parameters o and M,is given 

Fig.1 
in /3,4/. 

The relation between the indicated para- 

meters and the input parameters is defined 

as follows: 

M = M, sin p’, M, = M, cos x, p = fi' i- x +SP il.11 

where Mand M, are the Mach numbers of shock wave and wedge motion in the quiescent gas, re- 

spectively, and fi is the angle of slip defined as the angle between the part of the shockwave 

front above the wedge surface and that part of the edge over which the front has already pas- 

sed. 

2. Limits of regularity. Taking into account formulas (1.1) and conditions 0 > 90", 

x>O, we can obtain the equations of curves in the parameter plane X,& for fixed values of 

parameter fi' which correspond to the regularity limits /l/ 

where x is the adiabatic exponent. These curves are shown in Fig.2 by dash lines for x = 1.4 

and the indicated there values of fl'. The domain of possible values of these parameters is 

upper bounded by the solid line curve whose equation is of the form 

% = 90" - arcsin (l/M,) 
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which follows from the conditions X< 90" - 8', @'> ar&n (~/MO). 
Regular interactions correspond to the regions lying to the left of these lines. 

Using formula (2.1) and, for instance, tables in /3/ for the dependence of $'on IV, and 

WI it is possible to obtain the picture of regularity boundaries of the problem input para- 

meters. 
Curves determined in this way are shown by solid lines in Fig.2, where their correspond- 

ing half-angles of the cone/fuselage apex are also indicated. The upper curve which corres- 

ponds to the cone zero angle is the same as the previously mentioned upper bound of the re- 

gion of possible values of X, and for any M,and X the shock interaction is regular. For 

the remaining values of the cone half-angle irregular interactions correspond regions above 

the indicated boundaries. When the cone half-angle exceeds 2S", the shock interaction is 

irregular for any M,and X. 

If follows from Fig.2 that for any selection of the sweep-back angle of the wing edge 

and of the cone/fuselageaperture angle, change of type the interaction of shocks may occur 

twice as M,increases: first, for fairly low M,there is transition from the irregular to the 

regular type, followed by transition back again to the irregular type with further incrases 

of M,. Hence if on practical consideration the analysis is limited to fairly large aperture 

angles of the cone/fuselage, the range of parameters for which the 

shock interaction is irregular, will appear explicitly predominate. 

3. Pressure distribution over the wedge surface. We 
introduce the orthogonal system of physical coordinates x, y, Z 
whose origin is at point 0 (Fig.l), the Z axis coincides with the 

projection of the gas velocity vector behind the compression shock 

in the plane normal to the plane of the unperturbed shock front, 

and the Taxis normal to the Zaxis in the front plane. 

Fig.2 

The considered here flow is conical. Its analysis is carried 
out in the plane normal to the Z axis. The dimensionless self- 

similar coordinates and dimensionless perturbations of pressure p 
are defined by formulas 

X Y 

“=Ztga’ 
P- PI y=wtga P=, 
Wl% 

( a=arcsin s, p=arctg 2% 
[ 

1 
m 0 COSg'cOS(~' +X) I) 

where a is the Mach cone angle 

dimensional values of pressure 

1, respectively, and P, and a, 
spectively, in region 1. 

The pressure perturbation 

approximation with respect to 

of the flow behind the compression shock, i;; and pl, are the 

in the perturbed region (inside the Mach cone) and in region 

are the dimensional values of density and speed of sound, re- 

in the gas behind the shock wave was obtained in /l/ in linear 

E. After the substitution in respective formulas (using form- 
ulas (1.1)) of M,,X,P' for M,M,,p, we obtain for the sought distribution of pressure per- 

turbation the/following formulas: 

on the wedge surface (where pj is the perturbed pressure in region 5) 

(3.1) 

5 = [(I - x0) (1 + x)/(1 i- IO) (1 - X)l’/l 

and along the pressure shock front 

p(y) = _ + 2 di arctg [ (‘: - ;$’ - ‘“) I”’ _ cg ,n [(Ye2 - YcV’ + (Yk - y”)“‘]~ 
I Y2 - Y'I -&wYi;-YY) (3.2) 

i=1 

where 

M,= &M,,sini3'-$(1- ’ 
Ill”’ SlllP 8’ 
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In the SY plane in which the analysis is carried out, the distance between the triple 

point G of intersections of fronts to the wedge is defined by the fomlula 

u_ ll~,c0.~'C"~(p'~ %) C0Sc.C 
Yc, = 1, (,$,," C0s'! % _ I)'/' car' 

The inequalities YG(y,(YG> y,) correspond to irregular (regular) interactions. 

Remarks . lo. Formulas (3.1) and (3.2) are based on the assumption that Yl> Y* > 0. 
Otherwise, for instance, when yz<fi, it is necessary to substitute in the terms of formulas 

(3.1) and (3.2) with coefficients cz and d, the symbol Arth for arc&, and 2 - ys4 for yz2 -2 

and o-y2 for y,-fi . The case of yl< n is dealt similarly. 

2O. If, as already mentioned in Sect.1, the weak compression shock generatedbythewedge, 

which bounds region 5 in Fig.2, does not touch the Mach cone surface but intersects the ex- 

ternal shock front, it is necessary to substitute in formula (3.1) and in coefficients ca and 

5 the remainder ps --ps. for Ps, and add to the right-hand side of formula (3.2) p6 which 

represents the pressure perturbation in the region originated by the reflection of the weak 

shock from the arbitrarily strong shock front; it can be determined using the reflection co- 

efficient obtained in /5/. 
Pressure perturbation along the shock front proved to be an abruptly varying function in 

the neighborhood of the intersection line of that front with the front of the weak oblique 

compression shock, where it has a composite singularity consisting of a discontinuity and 

logarithmic singularity. Because of this, when line OG is fairly close to the wall, anotice- 

able redistribution of pressure on the wall, as compared with the cases of regular shock inter- 

action, is possible. 
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4. Calculation results. The formulas 

derived in Sect.3 and the indicated there tables 

enable us to obtain the distribution of pressure 

perturbation on the wedge surface for given input 

parameters M,, x , and o. 

Curves ofpressureperturbationonthewedgeare 

represented in terms of the coordinate .z* = (1 .I. 

z)/(l + r,),where z0 is the coordinate of point F of 

intersection of the compression shock front with 

the wall (the wedge), with z* = 0 corresponding to 

point D and x* = 1 to point F. 
In the cases of irregular interaction of shock 

waves we used for computation the formula (3.1), 

and in that of regular interaction farmulas of /2/ 

corrected in conformity with Sect.2 of /l/ were 

used. The adiabatic exponent was assumed equal 

(1.4). 

Fig.3 The effect of the edge obliquity angle i( on 

pressure distribution on the wall for o = 20" and 

M, = 15 is shown in Fig.3,a bX solid lines and for 

M,= 20 by dash lines. The curves relate to angle x equal 0, 20 and 40'. With increasing 

x these curves lie one under the other. 
As the edge obliquity angle is increased, an increase of the pressure gradient on the 

wall becomes noticeable near the compression shock front. This increase of pressure gradient 

takes place on the background of pressure perturbation decrease at each point, and is due to 

that the straight line OG approaches the wall as angle x is increased. Since in the con- 

sidered here cases the shock interaction is irregular, an abrupt change of pressure pertur- 

bation affecting its distribution takes place in the neighborhood of that straight line. For 

M, = 15, respectively M,= 20 we have y- <,* = 0.343 (0.265) in the case of x=0 

0.225 (0.175) and when X-40". 

and y,* = 

In these formulas yc* = ye/y,, and y, and y, are the coordi- 
nates of point I and Gon the compression shock front. 

and dash lines (M, = 20) shows, moreover, 

The comparisonof solidlines (M, = 15) 

that for each x the higher pressure gradient cor- 

responds to higher MO. 
The dependence of pressure distribution on M,is demonstrated by calculations with fixed 

values of angles o and x, as shown in Fig.3,b. Solid lines relate to o = x p IO" and the 
dash lines to IJI = 20" and x = 40'. Both sets of curves correspond to M, equal 6, 14 and 18. 

As ilf, is increased, pressure perturbation increases at every point of the wall, i.e.thecurves 

lie one above the other. 
The lower solid line (hf0=6) corresponds to regular shock interaction, while all the 

others to irregular interaction. 

respectively, 
For the indicated values of M, the quantity yc*is equal, 

1.110, 0.669 and 0.562 for solid lines, and 0.421, 0.239 and 0.192 for the 
dash lines. 

The dependence of pressure distribution on angle o at M,=l5 and 

Fig.3,b by dash-dot lines. 
x=3u' is shown in 

Angle (I) was varied between So and 25O in steps of 10~. As this 
angle is increased, the curves lie one under the other, to them correspond the 
values of yc* (from top to bottom): 0.851, 0.386 and 0.178. 

following 
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